A Feasibility Study on the Use of Binary Keypoint Descriptors for 3D Face Recognition
نویسندگان
چکیده
Despite the progress made in the area of local image descriptors in recent years, virtually no literature is available on the use of more recent descriptors for the problem of 3D face recognition, such as BRIEF, ORB, BRISK or FREAK, which are binary in nature and, therefore, tend to be faster to compute and match, while requiring significantly less memory for storage than, for example, SIFT or SURF. In this paper, we try to close this gap and present a feasibility study on the use of these descriptors for 3D face recognition. Descriptors are evaluated on the three challenging 3D face image datasets, namely, the FRGC, UMB and CASIA. Our experiments show the binary descriptors ensure slightly lower verification rates than SIFT, comparable to those of the SURF descriptor, while being an order of magnitude faster than SIFT. The results suggest that the use of binary descriptors represents a viable alternative to the established descriptors.
منابع مشابه
3D Face Recognition Based on Multiple Keypoint Descriptors and Sparse Representation
Recent years have witnessed a growing interest in developing methods for 3D face recognition. However, 3D scans often suffer from the problems of missing parts, large facial expressions, and occlusions. To be useful in real-world applications, a 3D face recognition approach should be able to handle these challenges. In this paper, we propose a novel general approach to deal with the 3D face rec...
متن کاملHybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملA Biological Motivated Multi-scale Keypoint Detector for local 3D Descriptors
Most object recognition algorithms use a large number of descriptors extracted in a dense grid, so they have a very high computational cost, preventing real-time processing. The use of keypoint detectors allows the reduction of the processing time and the amount of redundancy in the data. Local descriptors extracted from images have been extensively reported in the computer vision literature. I...
متن کاملAdaptation of SIFT Features for Robust Face Recognition
The Scale Invariant Feature Transform (SIFT) is an algorithm used to detect and describe scale-, translationand rotation-invariant local features in images. The original SIFT algorithm has been successfully applied in general object detection and recognition tasks, panorama stitching and others. One of its more recent uses also includes face recognition, where it was shown to deliver encouragin...
متن کامل